
The Freemat
Primer

By
Gary Schafer

Ver. 1.0
January 2009

The Freemat Primer
Page 1 of 85

Table of Contents
About the Author..4

User Assumptions..4
How I Put this Book Together...4
Licensing...4
Using with Freemat v3.6 Documentation ...4

Topic 1: Working with Freemat...5
Topic 1.1: The Main Screen - Ver 3.6...5

Topic 1.1.1: The History Window..6
Topic 1.1.2: The Files Window...7
Topic 1.1.3: The Workspace Window...7

Topic 1.2: The Command Window..8
Topic 1.3: Seeing the Results (or Not)...8
Topic 1.4: How Many Decimal Points Do You Want?...9
Topic 1.5: Understanding Variables...10
Topic 1.6: Variable Types...10
Topic 1.7: The Variable "Ans"...11
Topic 1.8: Built-In Variables...11
Topic 1.9: Using Built-In Functions...12

Topic 2: Working with Math..14
Topic 2.1: Basic Math Operations..14
Topic 2.2: Precedence...14
Topic 2.3: Cumulative Sum, Products and Factorials..15
Topic 2.4: Exponentials and Logarithms..16

Topic 3: Setting Up the Freemat Environment...19
Topic 3.1: Setting the Working Directory for Saving Files..19
Topic 3.2: Setting the Path for Retrieving Data Files ...21
Topic 3.3: Using a Fixed Width Font in the Freemat Editor..22

Topic 4: Working with WAV Files..23
Topic 4.1: Reading a WAV File Size..23
Topic 4.2: Reading a WAV File..23
Topic 4.3: Reading the Sample Rate and Bit Depth...26
Topic 4.4: Reading Only a Portion of a WAV File...28
Topic 4.5: Writing a WAV File...30

Topic 5: Plots...33
Topic 5.1: Plot of a One-Dimensional Array..33
Topic 5.2: Setting the Plot Color..34
Topic 5.3: Setting the Line Type..35
Topic 5.4: Point Markers..36
Topic 5.5: Making an X-Y Plot...39
Topic 5.6: Plots of Multiple, Independent Variables..41
Topic 5.7: Setting Horizontal and Vertical Limits..43
Topic 5.8: Resizing a Plot...45

The Freemat Primer
Page 2 of 85

Topic 5.9: Creating a Plot Title..47
Topic 5.10: Setting the X-Axis (Horizontal) Label..48
Topic 5.11: Setting the Y-Axis (Vertical) Label...49
Topic 5.12: Working with Multiple Figures...50
Topic 5.13: Saving Your Plots..51
Topic 5.14: Where Are My Saved Images?..52

Topic 6: Working with Arrays & Matrices...53
Topic 6.1: Creating a Sequential Array..53
Topic 6.2: Creating a Random Array..54
Topic 6.3: Viewing a Matrix Value...54
Topic 6.4: Matrix Math...55

Topic 6.4.1: Matrix Addition...55
Topic 6.4.2: Matrix Subtraction...56
Topic 6.4.3: Matrix Multiplication..57
Topic 6.4.4: Matrix Division...58
Topic 6.4.5: Element-wise Matrix Math..60

Topic 7: The Frequency Domain...63
Topic 7.1: Using the FFT..63
Topic 7.2: Windowing the Time-Domain Samples..65
Topic 7.3: Adjusting the Values of the FFT..66
Topic 7.4: Calculating the Inverse FFT..67
Topic 7.5: Setting the Frequency Units for the FFT Display...68

Topic 8: Scripts & Functions...73
Topic 8.1: The Freemat Editor...73
Topic 8.2: Creating a Script..74
Topic 8.3: Running a Script..79
Topic 8.4: Creating a Function...80

Topic 9: Flow Control..82
Topic 9.1: For Loops..82
Topic 9.2: Comparison / Equality Operators..83
Topic 9.3: While Loops..83
Topic 9.4: If-Elseif-Else Statements..84

The Freemat Primer
Page 3 of 85

About the Author

I am an electrical engineer. I know a little bit about computer programming (just enough to be trouble)
and mathematics (more than enough to cause trouble). My main emphasis is digital signal processing
and radio-frequency (RF) signals. If you're looking for help in complex programming using
Freemat, this is not the place. This is a basic book that I started putting together for my own use, but
then realized that others might find it helpful.

Any suggestions for improvements, corrections, or the like can be sent to garystar1 at comcast dot net.

This book is not exhaustive. I don't know how to use every, single button, icon, command, switch, dial,
gauge, and lever within Freemat. If you are looking for a book with details of all Freemat commands,
you will want the Freemat v3.6 Documentation by Samit Basu. It is available for free online at
http://freemat.sf.net/FreeMat-3.6.pdf.

User Assumptions
I assume that you have Freemat properly installed and working on a Windows platform. If you have
any issues, direct them to the online Freemat group, http://groups.google.com/group/freemat.

How I Put this Book Together
I used Freemat Ver 3.6 running within Microsoft XP (desktop system) or MS Vista Basic Home Edition
(laptop). The book was written with OpenOffice Writer 2.4.1, while I used Jasc's Paint Shop Pro Ver 9
for the graphics.

While Freemat on Linux platforms, such as Ubuntu, this workbook was put together for the Windows
version of Freemat.

Licensing
This book is published under the GNU Free Documentation License to conform with the GNU Public
License (GPL) of the Freemat software. As such, I've made this document available in both Adobe
PDF and OpenOffice open document text format (.odt). It may be reproduced for free by anyone, so
long as the author is given credit where due.

Using with Freemat v3.6 Documentation
Samit Basu, the man who wrote Freemat, created a document, the Freemat v3.6 Documentation, to
explain all of the commands and functions available in Freemat. This document is available online and
can be used along with this book to help better understand Freemat. Next to many of the commands
and functions in this book, you will find a statement such as (FD, p. 121). That means that you can
find more (and probably better) information on that function on page 121 of the Freemat
Documentation.

The Freemat Primer
Page 4 of 85

http://freemat.sf.net/FreeMat-3.6.pdf
http://freemat.sf.net/FreeMat-3.6.pdf
http://groups.google.com/group/freemat

Topic 1: Working with Freemat

Topic 1.1: The Main Screen - Ver 3.6
This is how Freemat looks when you first start it up (Figure 1).

Using the Command Window, its possible to enter variables, functions, programs and commands. The
History Window shows, in chronological order, all of the commands that have been entered and the
result. The newest commands are listed at the bottom; the older ones at the top.

When you first bring up the Freemat program, the first few lines of the Command Window will provide
some basic information on the program, such as the version, copyright, and how to tie into the
directories. The information for version 3.6 is shown below.

The Freemat Primer
Page 5 of 85

Figure 1: Main Freemat Window

Example - Beginning lines of Freemat 3.6

FreeMat v3.6
Copyright (c) 2002-2008 by Samit Basu
Licensed under the GNU Public License (GPL)
Type <help license> to find out more
<helpwin> for online help
<pathtool> to set or change your path
Use <dbauto on/off> to control stop-on-error behavior
Use ctrl-b to stop execution of a function/script
-->

We'll be spending most of our time covering the Command Window. This is where the action happens.
However, let's look briefly at the other windows.

Topic 1.1.1: The History Window
The history window shows a list of every entered command. The most recent is at the bottom and the
oldest is at the top.

From the command prompt within the Command Window, you
can select between previous commands in the history window
using the up and down arrow keys. The history file can even be
used from previous openings of the Freemat program. In other
words, you can close the program, re-open it, and the history file
will remain.

You can re-enter commands from the History Window by using the up and down arrow keys within the
Command Window, or by double-clicking on the command within the History Window.

You can remove everything from this window by selecting Tools -> Clear History Tool.

The Freemat Primer
Page 6 of 85

From the command prompt
within the Command Window,
you can select between
previous commands using the
up and down arrow keys.

Topic 1.1.2: The Files Window
Click on the "Files" tab. This window shows a listing of all files
within the current directory. See Figure 2. Typically, this
directory will be the "Freemat" directory under "Program Files".
This is the directory into which all of the files necessary to run
Freemat are stored. In this example, I've changed it to a special
directory into which I store all of my Freemat-related files.

You can use this window to enter a filename by simply double-
clicking on that file.

Note: The list in the Files Window is only updated when Freemat
is started. Any additions or deletions to the directory will not be
shown in Freemat until the next time you start the program.

Warning to MS Vista Users: There are issues saving files into
the Program Files directory. If you are running Windows
Vista as your operating system, I recommend that you jump to
Topic 3.1: Setting the Working Directory for Saving Files. Then
come back here.

Topic 1.1.3: The Workspace Window
Click on the "Workspace" tab. This window shows
all variables and, for single variables, it shows their
values. See Figure 3. Frankly, I keep this window
open more often than the others. I find this window
the most useful. It helps me to confirm variable
values and tells me when a matrix might be the
wrong size for operating (adding, multiplying, etc)
with another matrix.

You can erase all variables and their values by
typing "clear all" at the command prompt and
pressing <Enter>.

The Freemat Primer
Page 7 of 85

Figure 2: Files Window

Figure 3: Workspace Window

Topic 1.2: The Command Window
This is it. This is where it happens. The Command Window provides a prompt which is typically two
dashes followed by a right-pointing carrot. It's the "-->" you see in the Command Window.

You will use the Command Window to perform, well, everything. It can be basic operations, such as
simple addition or subtraction, or it can be lengthy, one-of-a-kind operations that uses many functions.
I use Freemat as a calculator when I don't have my trusty Hewlett-Packard HP50G handy. Execution of
any command in the Command Window simply requires entering the operation and hitting the <Enter>
key.

Example - Entering commands

At the command prompt, type "3 +2" and press <Enter>.

--> 3+2
ans =
5

When you press <Enter>, Freemat performs the calculation, displays the result (if that is what you
want... more on that below), and provides a new command prompt ready for another operation.

Topic 1.3: Seeing the Results (or Not)
Freemat allows you to use the semicolon (;) as a line end. When you do so, you're telling Freemat that
that is the end of the line. You can (if you so desire) put a bunch of commands on one line and just put
semicolons between them.

Example - Performing Multiple Commands on One Line

--> x=5.21; y=6.7; z=x*y
z =
34.9070

I do not recommend this, although there is absolutely nothing wrong with it. Look at the example
above. Having all of the commands on one line makes it more difficult to understand, especially if this
were part of a function or script. I recommend one line per command just to keep things neat and tidy.

You can also choose whether you want to see the results of an operation using the semicolon (;). If you
want to see the result immediately, merely enter the operation with nothing at the end. If you don't
want to see the result, add a semicolon at the end of the operation.

Example - Using the Semicolon (;)

The Freemat Primer
Page 8 of 85

If you wish to see the results immediately, do NOT use the semicolon:

--> x=7*3
x =
21

If you don't want to see the results, end the statement with a semicolon:

--> x=7*3;

In either case, the result is the same. Freemat performs the calculation, enters the result into the
variable "x", and stores it in memory. The only difference is whether you want to see the result of the
calculation right now. The semicolon really becomes handy when you start creating your own scripts
(essentially short programs) so that you won't be bombarded with intermediate calculation results.
Otherwise you could easily see hundreds or thousands of calculations, perhaps just in order to see the
final calculation of one number.

Even if you use the semicolon at the end of the statement, you can still see the result. There are several
ways to see the result of a calculation already performed. Here are a few:

● Enter the variable onto the command line and press <Enter>.
● Use the "Workspace" window. Simply click on the "Workspace" tab at the top of the narrow

window on the left of the screen.
● Type "who" onto the command line and press <Enter>. NOTE: This only shows the variable

name, type and array size. It does not show the value of the variable itself.

Example - Viewing a Variable Value using the Command Line

--> x=7*3;
--> x
ans =
21
--> who
Variable Name Type Flags Size

 ans int32 [1 1]
x int32 [1 1]

Topic 1.4: How Many Decimal Points Do You Want?
Freemat uses the format command (FD, p. 389) to show you a different number of decimal points
within the Command Window for numeric variables. If you want to see a lot of decimal places (14, to
be precise), use the command format long. If you don't, use format short (for 4 places).

By default, Freemat uses the short format.

Example - Setting the Number of Decimal Places with the Format Command

The Freemat Primer
Page 9 of 85

--> format short
--> pi
ans =
3.1416
--> format long
--> pi
ans =
3.14159265358979

Topic 1.5: Understanding Variables
A variable is simply a single character or a set of characters used to store some data. A variable name
can contain letters, numbers, and/or an underscore. Note: The variable name must start with a letter.
Also, variable names are case-sensitive. The variable X is different from the variable x.

A variable can store numbers of many different types (see Topic 1.6: Variable Types) as well as text.

A quick note on the allowable length of a variable name. In Matlab, a variable can be up to 19
characters long. In Freemat, I've made a variable name up to 73 characters long. Frankly, I don't know
how long variable names can be in Freemat, but the length of a variable will almost certainly not be a
problem. If you're using variable names longer than 73 characters, you need a day job.

To assign a value to a variable, use the equals (=) sign. A quick example is x = 5. The x is the variable
and 5 is the number being stored.

Topic 1.6: Variable Types
This topic is covered in the Freemat Documentation starting on page 269. Each variable has a type,
which is based on the type of number or alphanumeric string it stores and how many bits it uses to store
that number or string. The variable types are:

● int8 - a signed, 8 bit integer. Allowable values are -128 to 127.
● int16 - a signed, 16 bit integer. Allowable values are -32,768 to 32,767.
● int32 - a signed, 32 bit integer. Allowable values are -2,147,483,648 to 2,147,483,647. Default

Freemat type for integers.
● int64 - a signed, 64 bit integer. Allowable values are -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807.
● uint8 - an unsigned, 8 bit integer. Allowable values are 0 to 255.
● uint16 - an unsigned, 16 bit integer. Allowable values are 0 to 65,535.
● uint32 - an unsigned, 32 bit integer. Allowable values are 0 to 4,294,967,295.
● uint64 - an unsigned, 64 bit integer. Allowable values are 0 to 9,223,372,036,854,775,808.
● float - a signed, 32 bit floating point number. Allowable values are -3.4 x 1038 to 3.4 x 1038.

This is also called a single precision floating point number.
● double - a signed, 64 bit floating point number. Allowable values are slightly less than -1.79 x

10308 and slightly more than 1.79 x 10308. This is also called a double precision floating point
number. Default Freemat type for floating point numbers.

● complex - a signed, 32 bit complex floating point number. I believe that the values are both the
real and imaginary parts are single precision floating point numbers.

The Freemat Primer
Page 10 of 85

● dcomplex - a signed, 64 bit complex floating point number. Just as with the single precision
complex numbers (complex), I believe that each part of the complex number, real and
imaginary, is represented by a double precision floating point number.

● string - any combination of letters, numbers, and/or special characters. A string variable can be
a single character long, or up to 65535 characters long. A string variable is entered using single
quotes on each end. For example, a = 'hello' enters the string hello into the variable a.

Topic 1.7: The Variable "Ans"
You may have already noticed a variable, "ans". This variable is used
by Freemat to display results. This can be when you want to display a
variable, or if you perform a calculation without storing it to a variable.
However, if you specify a variable, such as "x = 1+1", then the result
of "1+1" will be stored in "x" rather than "ans".

"Ans" can also be used for calculations. For example, if you perform a
calculation without storing the result in a variable, the result is stored in "ans". Then you can use "ans"
as a variable in any follow-on calculations. If you do not store the results in the follow-on calculations,
the results are again stored in "ans".

A way to view all of the variables currently in use is the who (FD, p. 267) function. Simply type who
at the command prompt and hit <Enter>.

--> x=1;
--> who
Variable Name Type Flags Size

 x int32 [1 1]

Note that the who function provides all of the information on each variable. In this case, only one
variable has been defined. If there had been more than one, it would be listed here as well.

Topic 1.8: Built-In Variables
Freemat provides several different constants that are built in (FD, p. 201). The more useful ones (for
me, at least) are:

● e - the base of the natural logarithm. Value is approximately 2.71828.
● i - the imaginary operator.
● inf - infinity. Note that this is only used for float and double variable types. If you try to use

this on an integer-type variable, you may get strange results. You've been warned.
● pi - the ratio of the circumference of a circle to its diameter. The ever-wonderful 3.1415926...,

ad infinitum.

Example - The Built-In Variables

--> format long
--> e
ans =

The Freemat Primer
Page 11 of 85

The variable "ans" is
used to store the results of
a math operation any time
you do not specify the
variable yourself or to
display calculation
results.

2.71828182845905
--> i
ans =
0.0000000 + 1.0000000i
--> inf
ans =
1.#INF0000000000
--> pi
ans =
3.14159265358979

Topic 1.9: Using Built-In Functions
Freemat provides a plethora / potpourri / myriad / bunch of functions. But what is a function? A
function is nothing more than an algorithm or process to produce a result. For example, look at the
sin() function (FD, p. 193). It takes an input, in this case x, and calculates the sine of that input. It then
provides a return for the function. The return can be a number, just as with the already-mentioned
sin(), or it can be a display, as with the plot() function (FD, p. 514). In order to use functions properly,
you need to know:

● What arguments does the function need and in what order? For example, take the function
cumsum(x,d) (FD, p. 219). The x refers to an array, and the d refers to a dimension within that
array. It's important that when you invoke the function, such as typing it onto the command
line, that you put the proper arguments into the proper place. In this case, if you write it as
cumsum(d,x), you'll probably get an error, or at the very least you won't get the proper result.
Check the Freemat documentation. From the Command Window, click Help -> Online
Manual, press the F1 key to bring up the documentation, or download the documentation from
http://freemat.sf.net/FreeMat-3.6.pdf.

● Do the arguments have to be a certain type? Some functions want integers, others want floating
point variables, and still others want strings. For example, if you try to perform the function
sin('string'), you will definitely get an error. The sin function wants a floating point argument,
not a string. Make sure that you give the function what it wants, not what you think it wants.
How to be sure? Check the Freemat documentation.

● Do the arguments have to be a certain units? For example, the trignometric functions sin, cos,
and tan need their arguments to be in units of radians. If you put in 30o as the variable into the
sin function and expect to get a value of 0.5, you will get the wrong answer.

● What type of output does the function provide? For example, if you type into the command
line:

t=1:128;
x=sin(2*pi*t/32);
y=plot(x)

What you will get is a plot of the function y as well as the following within the command
window:

y =
100002

The Freemat Primer
Page 12 of 85

http://freemat.sf.net/FreeMat-3.6.pdf

What does y = 100002 mean? Who knows. But the plot function provides a graphical output.
It's not meant to return a number.

● Does the function already exist? Maybe. Again, check the documentation. Samit Basu and his
colleagues have done a masterful job of putting a lot of the commonly-needed functions into
Freemat. But I imagine that they have day jobs; it would take several people of their caliber
working more than full-time to put them all in there. And making your own is not difficult.
That will be for later. Topic 8: Scripts & Functions, to be precise.

The Freemat Primer
Page 13 of 85

Topic 2: Working with Math

Topic 2.1: Basic Math Operations
Basic math operations consist of add (+), subtract (-), multiply (* ; this is an asterisk, if you cannot
tell), divide (/), and exponent (^). The exponent is discussed in more detail in Topic 2.4: Exponentials
and Logarithms.

Example - Basic Math Operations

Here are examples of each of the five basic math operations.

--> 5.4+3.8
ans =
9.2000
--> 5.4-3.8
ans =
1.6000
--> 5.4*3.8
ans =
20.5200
--> 5.4/3.8
ans =
1.4211
--> 5.4^3.8
ans =
606.8709

Note that in each of these examples, I did not use the equals ("=") sign. The only time you use the
equals sign is when you want to assign a value to a variable.

Topic 2.2: Precedence
When performing math operations, Freemat uses the standard mathematical system of precedence.
This means that Freemat will perform some operations before others. The system of precedence1 is:

● Calculations in parentheses
● Exponential calculations
● Multiplication and division
● Addition and subtraction

This means that, given how a calculation is written, a calculation written using the same variables or
numbers, may have two, different outcomes. Here are two examples:

--> 4+5*3

1 An acryonym used to remember the order is PEMDAS, or "Parenthese, Exponents, Multiplication, Division, Addition,
Subtraction". A mnemonic used is "Please Excuse My Dear Aunt Sally". From Wikipedia, "Order of operations",
http://en.wikipedia.org/wiki/Order_of_operations, 31 July 2008.

The Freemat Primer
Page 14 of 85

ans =
 19
--> (4+5)*3
ans =
 27

 In the first calculation, Freemat will, according to the rules of precedence, perform the multiplication
(5*3) before the addition. Thus, it has an intermediate step of, first, the multiplication, which results in
15, followed by the addition of 4. This results in a total of 19.

In the second calculation, Freemat performs the addition first. This is due to the parentheses. Thus, it
first adds 4+5, giving an intermediate value of 9, which is then multiplied by 3. This results in a final
value of 27.

Topic 2.3: Cumulative Sum, Products and Factorials
Freemat provides several functions that allow you to efficiently calculate the cumulative sum and
product of an array of numbers, as well as the factorial of a number. These are:

● cumsum(x) - This is the cumulative sum of the array x. This creates an array, with each point
of the array the sum of each number in the array that came before it. (FD, p. 219)

● cumprod(x) - This is the cumulative product of the array x. This creates an array, with each
point of the array the product of each number in the array that came before it. (FD, p. 217)

● gamma(x) - This is an integral function. We'll discuss its primary purpose later. However, for
integer values of x this function can be used to calculate the factorial of a number. With this
function, x! = gamma(x+1). (FD, p. 182)

Example - Cumulative Sum, Products and Factorials

--> x=rand(1,10)
x =
Columns 1 to 5
0.9386 0.9957 0.1178 0.9420 0.3271
Columns 6 to 10
0.5635 0.2212 0.6741 0.9849 0.2905
--> y=cumsum(x)
y =
Columns 1 to 5
0.9386 1.9342 2.0521 2.9941 3.3212
Columns 6 to 10
3.8847 4.1059 4.7800 5.7649 6.0554

--> y=cumprod(x)
y =
Columns 1 to 5
0.9386 0.9345 0.1101 0.1037 0.0339
Columns 6 to 10
0.0191 0.0042 0.0029 0.0028 0.0008

The Freemat Primer
Page 15 of 85

Here's an example of calculating 5! (5 factorial):

--> gamma(5+1)
ans =
120

Topic 2.4: Exponentials and Logarithms
When numbers are raised to a power, the power is the exponent. For example, for x2 the 2 is an
exponent; x is the base of the number. There are two ways to use exponents. The first is with the
power symbol (^). The second is with the power and exponential functions. The power symbol is
typically easiest. Simply type a number or variable, the ^ symbol, and then the power to which you
want to raise it.

Example - Raising a Number or Variable to a Power

--> x=5.6;
--> x^2.5
ans =
74.2113
--> 8^3
ans =
512

Common bases for exponential functions are 10 and e. Freemat provides two such functions. These
are:

● exp(x) - This is exactly the same as if you had typed e^x. Since Freemat provides e as a
standard variable, I've found its easier to simply type e^x than exp(x). Oh, and in case you're
worried whether there are differences, there are. But I've only seen a difference in the very last
digit of the double type variables (14 digits) I've tested with. Not being a mathematician, I don't
know which one is correct. I just go with the assumption that they're both the same. (FD, p.
180)

● expm1(x) - This is useful for calculating the value of exp(x)-1 when x is a small value. This is
one of those times when it's better to do it with the function than do-it-yourself. (FD, p. 181)

Example - Exponential Functions
The first example shows the use of the exponent function exp(). It compares it to using the power
function with the base of the natural logarithm, e.

--> exp(4)
ans =
54.5982
--> e^4

The Freemat Primer
Page 16 of 85

ans =
54.5982
--> expm1(0.0001)
ans =
1.0001e-004

Logarithms: The logarithm function is a way to calculate the exponent of a number of a certain base.
Common bases for logarithm functions are 10 and the natural base e. Freemat provides four
logarithmic bases. These are:

● log10(x) - calculates the log, base 10, of the variable x. (FD, p. 186)
● log2(x) - calculates the log, base 2, of the variable x. (FD, p. 187)
● log(x) - calculates the log, base e, of the variable x. This is oft-times called the natural

logarithm function and has the form ln(x). (FD, p. 185)
● log1p(x) - calculates the logarithm, base e, for the argument plus one. In other words, calculate

the natural logarithm for x+1. (FD, p. 187)

Example - Logarithm Functions

--> log10(10)
ans =
1
--> log10(25)
ans =
1.3979
--> log(10)
ans =
2.3026
--> log(e)
ans =
1
--> log2(2)
ans =
1
--> log2(16)
ans =
4
--> log2(10)
ans =
3.3219

Calculating the Logarithm to an Arbitrary Base: There's a common way, mathematically, to
calculate the logarithm of a variable for any base. Simply calculate the log of the number to any base,
then divide that by the log, to the same base, of the number whose base you want to calculate. Clear as
mud? Let's try an example.

Example - Calculating the Logarithm of a Number to an Arbitrary Base

Calculate the log, base 3, of the number 5. In mathematical parlance, this would be written as log3(5).

The Freemat Primer
Page 17 of 85

--> format long
--> log(5)/log(3)
ans =
1.46497352071793

Calculate the log, base 6.2, of the number 16.

--> log(16)/log(6.2)
ans =
1.51960198297685
--> log10(16)/log10(6.2)
ans =
1.51960198297685

The last example shows that any base logarithm can be used to calculate the log of a number to an
arbitrary base. The next example shows that this method of calculating the log using this method
works the same as if you had calculated using the actual base logarithm.

--> log(5)
ans =
1.60943791243410
--> log10(5)/log10(e)
ans =
1.60943791243410

The Freemat Primer
Page 18 of 85

Topic 3: Setting Up the Freemat Environment
Before we get too deep into Freemat, let's set a few things up.

Topic 3.1: Setting the Working Directory for Saving Files
To be truly useful, Freemat needs to
work with data. Whether its scripts,
functions, images, or other data,
Freemat needs someplace to put this
stuff. When Freemat is first installed
in Windows, all data is stored in the
Freemat folder under the Program
Files directory. This is shown in the
small box at the top of the Freemat

window. See Figure 4.

By default (for Windows users), the working directory is C:/Program Files/Freemat x, where x is
replaced by whatever version of Freemat you first installed. And x may be different than what you are
currently using. That's because Freemat may not change the directory name if you've upgraded. (It did
not change for me when I upgraded Freemat on my WinVista machine from 3.5 to 3.6. It did change
on my WinXP system.) By default, Freemat will attempt to save all of your data to your working
directory. Okay, this is not that big a deal when saving scripts because Windows uses a standard "Save
File" window that explicitly makes you choose a folder. But for your data reads and writes, you should
take heed and change the working directory to something other than the Program Files directory.

WARNING TO VISTA USERS
Since WinVista protects all files within the Program Files directory, as well as all sub-folders, Freemat
will not be able to save any data to this directory or any of its sub-folders. And you thought that that
funny "Cancel or Allow" Mac commercial was just being sarcastic? No. They were serious.
Unfortunately, neither Freemat nor Vista will provide any indication that the save / store operation did
not work. I found this out the hard way while running some scripts on my Vista-based laptop. After
running the scripts in which I expected to see saved data, I checked in the Program Files/Freemat folder
and found... my data was not there. Please learn from my lesson. If you're using Freemat within Vista,
change your working directory to some folder within your "User" folder. You'll be very glad you did!

You have two options. First, change your working directory. This is the one I recommend. Keeps
things simple. To do so, use the cd (change directory) command (FD, p. 453).

NOTE: As of this writing, I have not been able to use the browse button next to the Working
Directory box to actually change my working directory. This applies to both the WinXP and
WinVista. Every time I've tried, I get the following error: Error: cd function requires exactly one
argument. If you have the same problem, you'll have to change your working directory manually.

The Freemat Primer
Page 19 of 85

Figure 4: Working Directory box at top of Freemat window

http://www.youtube.com/watch?v=VKM1cAtAdtQ
http://www.youtube.com/watch?v=VKM1cAtAdtQ

To change the working directory, type:

cd 'full path name'

where 'full path name' is just that, the full working path of your desired directory. For example, I
created a folder under "My Documents" called "Freemat". To make it the working directory, I'd use the
following command:

cd 'C:\Documents and Settings\Owner\My Documents\Freemat'

If you're afraid of mis-typing the full path (and who wouldn't be?), you can use Windows Explorer to
help out. Open up Windows Explorer, click around to open the directory where you want to store your
files, then look in the Address Bar. See Figure 5.

If you do not see the Address Bar in the Windows Explorer window, click View -> Toolbars and click
on Address Bar so that it has a check mark next to it.

With the Address Bar showing:

● Highlight the text in the Address Bar (which is your desired path name)
● Click Edit -> Copy (or just hit Ctrl+C)
● Switch over to the Freemat window
● Put your cursor wherever you want to enter the path name (the Command Window, the Editor

Window, wherever)
● Press Ctrl+V to copy the path name into Freemat.

If you don't want to change the working directory, your second option is to include the full path in the
command needing the filename. As an example, look at the print command (FD, p. 520) used to save
plots as images. Rather than just the filename, I could include the path and file name in the print
command. This would look like:

print('C:\Documents and Settings\Owner\My Documents\Freemat\testfile.png')

Adding the full path name along with the filename can be unwieldy. But if you want to make
absolutely, positively certain that your file is stored in a particular directory, this is the way to go.

The Freemat Primer
Page 20 of 85

Figure 5: Windows Explorer showing Address Bar

One, last thing about the working directory. Freemat will not remember it when you close the program.
The next time you start Freemat, you're back to the Program Files/Freemat folder as your working
directory. I have three remedies.

First, create a one-line script that changes your working directory. (See Topic 8: Scripts & Functions).
The entire script will be the one line cd (change directory) command with the path name of your
desired working directory. Store this script into your primary Freemat programs folder (typically the
already-mentioned C:/Program Files/Freemat folder. When you first start up Freemat, run this script
and (Voila!), your working directory will be changed to something of your choosing.

Changing the Working Directory for Windows Vista Users

Windows Vista and Freemat are not incompatible. But Vista has thrown in a few twists for... fun.
Here's my recommendation for changing the working directory for Vista users. This will be a two-step
process.

Step #1. Make a one-line cd script. When you save the script, save it to your User directory. Why?
Because Vista does not allow Freemat to save files to the Program File directory, or any of its sub-
directories.
Step #2. Use Windows Explorer to move (or just copy) the file from your User directory to your
Freemat directory within the Program Files folder.

Now, when you first run Freemat, it will look for scripts within the Freemat directory within the
Program Files folder. As the first command you run when you open Freemat, type the name of your
script. Mine, for example, is called workdir. It changes my working directory to one within my User
directory, not in my Program Files folder.

Second, put a cd command at the beginning of each script you run. Slows down the execution a little
bit, but it's only necessary if you plan on saving any data as part of the script. And it will also ensure
your data from that script goes to the desired folder.

My third, and last, suggestion has already been mentioned. If you save any data (print, wavwrite, etc),
include the full path in the filename.

Topic 3.2: Setting the Path for Retrieving Data Files
Retrieving or reading data files is different than saving or storing them. When Freemat saves a data
file, it wants to go to the working directory by default. However, when you want to retrieve a file,
Freemat will look at your working directory and any folders listed in your Path Tool. This includes any
data files, images, scripts, or functions you may have written.

To set the path for Freemat, click on Tools -> Path Tool in the Freemat menus. This will open a
window, as shown in Figure 6. Use the directory tree on the left of the window to select the folder that

The Freemat Primer
Page 21 of 85

you want to include in the path. Then either
click the "Add" or "Add With Subfolders"
button.

Figure 7 shows the Path Tool window with a
new folder added. In this case, I selected the
"Documents" folder under the "Users"
directory. Then, I clicked the "Add" button.

Topic 3.3: Using a Fixed Width
Font in the Freemat Editor
The first time that you open the Editor Window
in Freemat, you may see a warning that you
should use a fixed width font. Why? I have no
idea. The type and size of the font makes
absolutely no difference to how it is executed.
To stop seeing this message, change the font
type. To change the font, click on the Edit
menu, followed by Preferences -> Font. A
window will open that allows you to change the
standard font. The one I use is Courier New.
And use a size that is easy for you to read.

The Freemat Primer
Page 22 of 85

Figure 6: Path Tool window

Figure 7: Path Tool window with folder added

Topic 4: Working with WAV Files

A WAV (.wav) file is a standard, Microsoft audio file. Freemat provides a function to both read from
and write to these types of file. It allows you to read the samples (mono and stereo), the sample rate,
the number of bits per sample used to digitize the audio, only retrieve a portion of the file if you so
desire, and to read the total size of the file.

Topic 4.1: Reading a WAV File Size
NOTE: As of this writing, any .wav files to be read must be in the working directory. Files just
within the path as defined by the Path Tool will not be found and Freemat will return an error.

We'll look at the reading first, which uses the wavread function (FD, p. 411). Let's start by
determining the size of the file as well as whether it is a monophonic or stereo signal. The syntax is:

y=wavread('filename.wav','size')

where:
y = variable used to store the two-dimensional matrix with the number of audio samples and the
number of audio channels (1 for monophonic, 2 for stereo).
filename.wav = filename of WAV file.

This is the command to use when you don't know the size of the file, or whether it is mono or stereo.

Example - Checking a WAV File Size

Let's say I have a WAV audio file named myaudio.wav. To check the file size, I'll use the wavread
function with the 'size' handle, as follows:

y=wavread('myaudio.wav','size)
y =
 90061 2

This means that I have a WAV file that is stereo (that's the "2") and has 90061 audio samples in each
channel (left and right).

Topic 4.2: Reading a WAV File
To read a .wav file, use the following syntax:

y=wavread('filename.wav',)

where:

The Freemat Primer
Page 23 of 85

y = the variable used to store the audio samples. The .wav file can be either monophonic or stereo.
filename.wav = the audio file as listed in the directory.

NOTE: In the Freemat Version 3.6 Help directory, the example used does not show using the '
marks. To use this function properly, you must use these marks otherwise you will get an error
when attempting a wavread() function.

The matrix containing the audio samples will either be a 1 or 2 column matrix. The size of the matrix
will be:

[x d]

where:
x = number of samples in the audio file
d = 1 for a monophonic signal or 2 for a stereo signal. In the case of a stereo signal, the left channel
will be column 1 and the right channel will be column 2.

When a WAV file is stored, it's stored as either 8 or 16 bit samples, typically. An 8 bit sample will have
acceptable values of 0 - 255. A 16 bit sample will have acceptable values of 0 - 65535. When Freemat
imports the samples, it normalizes the amplitudes to fall within the range of -1 to 1. To me, this is a
great thing. It makes it much easier to process the samples later on if they are already normalized.
Otherwise, I would have to normalize them myself.

Example - Reading from a Monophonic WAV File

I'll use a monophonic WAV file, myaudio_mono.wav. It's a monophonic audio file of a human voice.

--> y=wavread('myaudio_mono.wav');
--> plot(y)

The Freemat Primer
Page 24 of 85

Example - Reading from a Stereo WAV File

I'll use the WAV audio file from the previous example named myaudio.wav.

--> y=wavread('myaudio.wav')

The next line pulls out the left channel (column 1) in order to display it.

--> L=y(:,1);
--> plot(L)

The Freemat Primer
Page 25 of 85

Figure 8: Plot of monophonic audio file, myaudio_mono.wav. This is a
WAV audio file of human voice. Note that the amplitudes are normalized
to fall within the range of -1 to 1.

Topic 4.3: Reading the Sample Rate and Bit Depth
To read the sample rate and the number of bits, you use the following syntax:

[y, sample_rate, bit_depth] = wavread('filename.wav')

where:
y = the variable used to store the audio samples.
sample_rate = the sample rate, in Hz, of the digitized audio.
bit_depth = the number of bits used to digitize each sample. Note that, in order to read the number
of bits, you must also read the sample rate. However, you do not need to read the bit depth in
order to read in the sample rate.
filename.ave = the audio file as listed in the directory.

By reading the sample rate, you can make plots that have time on the horizontal axis and/or you can
make frequency domain plots that have the horizontal axis in Hz, rather than the default sample
numbers.

Example - Reading the Sample Rate

Here's an example showing how to read in the sample rate, then create a time axis for the plot.

The Freemat Primer
Page 26 of 85

Figure 9: Plot of left channel of myaudio.wav, a stereo audio file of
human voice. Again, note how the amplitudes are normalized to fall
within the values of -1 to 1.

--> [y,sample_rate]=wavread('myaudio.wav');
--> sample_rate
ans =
 44100
--> L=y(:,1);

The next line creates a time counter in seconds. It uses the function length(x), which returns the length
of the matrix x. By dividing the counter by the sample rate, the counter becomes time in seconds.

--> t=(1:length(L))/sample_rate;
--> plot(t,L)

Example - Read the Bit Depth

Remember: In order to read the bit depth, you have to also read in the sample rate.

This example reads in the bit depth and sample rate from myaudio_mono.wav. The sample rate is
read in as 44100 Hz (44.1 kHz) and the bit depth is 16, meaning 16 bits are used to digitize each
sample.

--> [y,sample_rate,bit_depth]=wavread('myaudio_mono.wav');
--> sample_rate
ans =
 44100
--> bit_depth

The Freemat Primer
Page 27 of 85

Figure 10: Plot of left channel of myaudio.wav file with time (in seconds)
on horizontal axis.

ans =
 16
--> t=(1:length(y))/sample_rate;
--> plot(t,y)

Topic 4.4: Reading Only a Portion of a WAV File
Freemat provides handles that allow you to read in only a portion of a WAV file. The two syntaxes are:

y=wavread('filename.wav', [start stop])
y=wavread('filename.wav', samples)

where:
y = variable used to store samples from WAV file.
start = sample number at which to start reading the WAV file.
stop = sample number at which to stop reading the WAV file.
samples = number of samples, starting at the beginning of the WAV file, to import.

Example - Reading in Only a Portion of a WAV File

In this first example, I'll read in only 8192 samples starting from the beginning of the file.

The Freemat Primer
Page 28 of 85

Figure 11: Plot of mono signal myaudio_mono.wav, which is has a
sample rate of 44.1 kHz and a bit depth of 16 bits. The horizontal axis is
time in seconds.

[y,sample_rate]=wavread('myaudio_mono.wav',8192);
t=(1:length(y))/sample_rate;
plot(t,y)

For the next example, I'll read in 8192 samples starting at sample 6500.

[y,sample_rate]=wavread('myaudio_mono.wav',[6500 (6500+8192)]);
t=(1:length(y))/sample_rate;
plot(t,y)

The Freemat Primer
Page 29 of 85

Figure 12: Plot of portion of WAV audio file with only 8192 samples.

Topic 4.5: Writing a WAV File
When writing a WAV file, you start with a one- or two-dimensional matrix. These are the audio
samples. The function to use is wavwrite (FD, p. 412), and its syntax is as follows:

wavwrite(x,'filename.wav')

where:
x = variable containing audio samples
filename.wav = name of file into which the WAV file will be stored.

Remember: Files written from Freemat will be stored into the working directory. You can change this
by either changing the working directory of by specifying the full path name into the wavwrite
function. If you're using Windows Vista, you will need to change the working directory to something
other than your Program Files folder. Otherwise, you won't be saving your files. They will simply not
be stored. See Topic 3.1: Setting the Working Directory for Saving Files.

Example - Creating a Monophonic WAV Audio File

This short script creates a tone at middle C (261.626 Hz). The script uses the default Freemat sample
rate (8000 Hz), and it will last for 1 second. This will be a one-dimensional matrix, so the WAV file

The Freemat Primer
Page 30 of 85

Figure 13: Plot of WAV file with 8192 samples imported starting at
sample 6500.

will be monophonic. You can play the resulting WAV file, "sinewave.wav", using any WAV player,
such as Window's built-in audio player, Windows Media Player.

f=261.626;
t=1:8000;
tone_c=0.8*cos(2*pi*t*f/8000);
wavwrite(tone_c,'sinewave.wav');

Example - Creating a Stereo WAV Audio File

This script creates two tones, one at middle C (261.626 Hz) and the second harmonic of middle C
(~523 Hz). The middle C tone is written into the left channel (column 1) of a matrix; the harmonic is
written into the right channel (column 2).

f=261.626;
t=1:8000;
tone_c(:,1)=0.8*cos(2*pi*t*f/8000);
tone_c2(:,1)=0.8*cos(2*pi*t*2*f/8000);

The next line will create a two-column matrix. The middle C tone (tone_c) will be placed into column
1, which corresponds to the left channel. The harmonic (tone_c2) will be placed into column 2, which
corresponds to the right channel.

y=[tone_c tone_c2];
wavwrite(y,sample_rate,bit_depth,'sinewave_stereo.wav');

By default, Freemat will assume that the samples have an 8 kHz (8000 Hz) sample rate and 16 bit
depth. However, you can change this by adding the sample rate and the bit depth into the write
operation. The syntax is as follows:

wavwrite(x,sample_rate,bit_depth,'filename.wav')

where:
x = one- or two-dimensional matrix containing audio samples.
sample_rate = sample rate, in Hz, of audio samples.
bit_depth = number of bits used to digitize each sample. NOTE: This is optional.
'filename.wav' = name of file used to store resulting WAV file.

Example - Writing a WAV File with a Different Sample Rate

In this example, I'll create a middle C tone at a sample rate of 16 kHz (16000 Hz) and 8 bit depth.

sample_rate=16000;
bit_depth=8;
f=261.626;
t=1:sample_rate;
y=0.8*cos(2*pi*t*f/sample_rate);

The Freemat Primer
Page 31 of 85

wavwrite(y,sample_rate,bit_depth,'my_tone.wav');

The Freemat Primer
Page 32 of 85

Topic 5: Plots
The default plot function provides a blue colored, solid line plot in a window that is 600 x 400. The
area minus the toolbars is 600 x 344. The actual plot itself, which I call the plot area, is roughly 420 x
210. The basic plot function (FD, p. 514) is as follows:

plot(y)

where: y = the name of the variable containing the array to be plotted.

When you create a plot, it's put into a separate window that has a number. By default, the first figure
will be Figure 1. Any further plots will be put into this same window unless you explicitly tell Freemat
to put them into different windows. More on that later.

Topic 5.1: Plot of a One-Dimensional Array
Let's start by looking at the plot of a single variable, an array with one dimension.

Example - Making a Plot of a Single Variable

t=1:128;
x=cos(2*pi*t/32);
plot(x)

The resulting figure is shown in Figure 14.

The Freemat Primer
Page 33 of 85

Topic 5.2: Setting the Plot Color
The plot function comes with a few handles that you can set when you invoke the function itself.

NOTE: The only time possible to set the handles for plot color, line type, and point markers is when
invoking the plot function. It is not possible to change these after the plot is created.

Simple colors can be added as a single-character handle for the function. These colors are:

• 'r' - Color Red
• 'g' - Color Green
• 'b' - Color Blue
• 'k' - Color Black
• 'c' - Color Cyan
• 'm' - Color Magenta
• 'y' - Color Yellow

NOTE: Plot Colors have to be used with a Line Type and/or a Point Marker (listed below);
otherwise, your plot will be invisible. Line Types or Point Markers, however, do not require a Plot
Color; they can be used individually.

The Freemat Primer
Page 34 of 85

Figure 14: Plot of One Variable

Topic 5.3: Setting the Line Type
Freemat provides several different line types. These are:

• '-' - (hyphen) Solid line style
• ':' - (colon) Dotted line style
• '-.' - (hyphen followed by a period) Dot-Dash-Dot-Dash line style
• '--' - (two hyphens in a row) Dashed line style

Example - Plots using Different Line Types

Using the following commands, or as a script, you get the plot shown in Figure 15. This is a plot using
a green (the letter "g" in the plot function), dotted (the colon in the plot function) line.

t=1:256;
y=2*pi*t;
x=sin(y*1/100)-1/3*sin(y*3/100)+1/5*sin(y*5/100);
plot(x,'g:')

Or change the command to create a solid, black line, as shown in Figure 16.

t=1:256;
y=2*pi*t;
x=sin(y*1/100)-1/3*sin(y*3/100)+1/5*sin(y*5/100);
plot(x,'k-')

The Freemat Primer
Page 35 of 85

Figure 15: Plot using a green, dotted line

Topic 5.4: Point Markers
Freemat allows you to show the actual point as a marker. The markers provided are:

• '.' - (period) Dot symbol
• 'o' - (small letter "o") Circle symbol
• 'x' - (small letter "x") Times symbol
• '+' - (self-explanatory) Plus symbol
• '*' - (self-explanatory) Asterisk symbol
• 's' - (small letter "s") Square symbol
• 'd' - (small letter "d") Diamond symbol
• 'v' - (small letter "v") Downward-pointing triangle symbol
• '^' - (self-explanatory) Upward-pointing triangle symbol
• '<' - (self-explanatory) Left-pointing triangle symbol
• '>' - (self-explanatory) Right-pointing triangle symbol

The marker symbol can either take the place of the line type, or it can be used simulataneously.

Example - Plots using Point Markers

Here's a short script that creates a plot. The plot is a solid, black line.

The Freemat Primer
Page 36 of 85

Figure 16: Plot using a black, solid line

t=1:64;
y=2*pi*t;
x=cos(y*5/100);
plot(x,'k-')

Next, we add square point markers (the added "s" in the plot function).

t=1:64;
y=2*pi*t;
x=cos(y*5/100);
plot(x,'k-s')

The Freemat Primer
Page 37 of 85

Figure 17: Plot with a solid black line

Finally, create a plot just using square point markers. The plot is blue because of the fact that, unless
explicitly stated, Freemat plots will be blue.

t=1:64;
y=2*pi*t;
x=cos(y*5/100);
plot(x,'s')

The Freemat Primer
Page 38 of 85

Figure 18: Plot with a solid, black line and square markers

Topic 5.5: Making an X-Y Plot
If you want to plot one array against another, typically called an X-Y plot, use the following format:

plot(x,y)

where: x = the variable containing the format for the x-axis (horizontal) direction
y = the variable containing the format for the y-axis (vertical) direction

Example - Making an X-Y Plot

The first example shows a cosine wave plotted on the horizontal axis against a sine wave on the vertical
axis.

t=1:128;
x=cos(2*pi*t/32);
y=sin(2*pi*t/32);
plot(x,y)

The result is shown in Figure 20.

The Freemat Primer
Page 39 of 85

Figure 19: Square point marker plot of sine wave.

Using a dot point marker type on an X-Y plot, we can create a scatter plot. In this case, we can see
two, Gaussian random variables plotted against each other.

x=randn(1,10000);
y=randn(1,10000);
plot(x,y,'k.')

The Freemat Primer
Page 40 of 85

Figure 20: Plot of an X-Y Graph

Topic 5.6: Plots of Multiple, Independent Variables
To plot two or more independent variables, put a string containing a line color, line type, and/or point
marker between the variables. This can be shown as follows:

plot(x,y): This will plot the variables in an X-Y plot.
plot(x,'-',y): This will plot the variables x and y both along the horizontal axis. Both will be solid
lines. The x variable will be blue. The y variable will be green. (See discussion of plot colors below.)
plot(x,'s',y,'-',z): This will plot the variables x, y, and z along the horizontal axis. In this case, the x
variable will be blue square markers, the y variable will be a solid green line, and the z variable will be
solid red line.

 Assuming you do not explicitly tell it a color for the respective variable, Freemat will default to the
following colors (in order) for the first five independent variables:

1. Blue
2. Green
3. Red
4. Cyan
5. Purple

Example - Plots of Multiple, Independent Variables

In the first example, we'll use the same script as used to create Figure 20, but with one difference. We'll

The Freemat Primer
Page 41 of 85

Figure 21: Scatter plot using black dot markers

put a line type (in this case, a solid line "-") between the two, independent variables.

t=1:128;
x=cos(2*pi*t/32);
y=sin(2*pi*t/32);
plot(x,'-',y)

In this next plot, we'll create five different waveforms, plot each as a solid line (again, the "-" symbol),
and use the default colors.

t=1:100;
w=2*pi*t;
x=cos(w*5/100);
y=0.5*sin(w*7/100);
z=0.7*cos(w*10/100);
a=0.3*abs(sin(w*3/100));
b=-0.3*abs(cos(w*3/100))-0.1;
plot(x,'-',y,'-',z,'-',a,'-',b)

The Freemat Primer
Page 42 of 85

Figure 21: Plot of two independent variables using default colors

Topic 5.7: Setting Horizontal and Vertical Limits
You may have noticed that, in several of the plots, the graph does not completely fill the plot area.
That's because Freemat sets limits that allow for nice, neat divisions. You can manually set the limits,
however. This uses the xlim() and ylim() functions (FD, p. 542 & 545, respectively).

These functions are separate from the plot() function and are invoked after the plot is created.

To set the horizontal limits, the syntax is xlim([lo,hi]), where lo and hi are the beginning (left-most)
and the end (right-most) limits, respectively, for the graph.

To set the vertical limits, the syntax is ylim([lo,hi]), where lo and hi are the lowest (bottom) and
highest (top) limits, respectively, for the graph.

Example - Setting the Horizontal and Vertical Limits of a Plot

We'll start with a graph that has room for setting the horizontal and vertical limits.

t=0:128;
x=cos(2*pi*t/32).*exp(t/128);
plot(x)

The Freemat Primer
Page 43 of 85

Figure 22: Plot showing five independent variables using default colors

To fix this, we'll first set the horizontal limits. The result is shown in Figure 24:

xlim([1,128])

The Freemat Primer
Page 44 of 85

Figure 23: Plot that does not fill up the plot area.

Figure 24: Plot with horizontal limits manually set

Finally, we'll set the vertical limits:

ylim([-2,2])

Topic 5.8: Resizing a Plot
You can resize the plot using the sizefig function (FD, p. 524). It has the following syntax:

sizefig(x,y)

where:
x = the size of the total window horizontally
y = the size of the gray area vertically. The vertical size of the window will be this number plus 56
pixels.

This function is also invoked separately from the plot function and must be invoked after the plot
function. This is the same as using either the xlim or the ylim functions.

NOTE: The size of the actual plot area will be less than that stated in sizefig.

The plot area will be roughly 0.735 of the stated horizontal number and 0.67 of the stated vertical
number. Therefore, to have the plot area be a certain size, you need to perform the calculations as
follows:

The Freemat Primer
Page 45 of 85

Figure 25: Plot after setting both the horizontal and vertical limits

entered_number_horizontal ≈ desired_horizontal_size/0.735

entered_vertical_size ≈ desired_vertical_size/0.67

Example - Resizing a Plot

In this example, we'll look at resizing a plot.

t=1:1024;
x=sin(2*pi*t/100);
plot(x)

These commands will create the plot shown in Figure 26.

Once we run the sizefig function, we get the plot shown in Figure 27.

sizefig(300,200)

The Freemat Primer
Page 46 of 85

Figure 26: Plot shown in default size

Topic 5.9: Creating a Plot Title
Now that you've created your plot, you can add labels. One of these is a plot title, invoked using the
title function (FD, p. 533).

title('Put Your Title Here')

The title function comes with several handles, including:

position - use this to set the horizontal and vertical position of the title. The syntax is :

title('Put your Title Here','position',[x-position y-position])

where:

• x-position = a number from 0 - 1, inclusive. 0 is the left side of the window; 1 is all the way on
the righthand side.

• y-position = a number from 0 - 1, inclusive. 0 is the bottom of the window; 1 is all the way on
the top.

The position point of the title string is the center, topmost point of the string. This is shown graphically
by the black dot in the text string below.

The Freemat Primer
Page 47 of 85

This is the Title String

Figure 27: Resized plot at a smaller size

If no position is provided, the default position is [0.5 1], which is centered at the top of the display
window.

The stated position is from the center of the provided text horizontally and at its very top vertically.

Example - Positioning a Plot Title

The following is an example of creating a plot, setting limits on the horizontal axis, and creating and
positioning a title.

y=wavread('mywavfile.wav',[10000 12500]);
plot(y,'k-');
xlim([1000 1100]);
title('Audio Plot','position',[0.5 0.92]);

The result is shown in Figure 28.

Topic 5.10: Setting the X-Axis (Horizontal) Label
It's possible to provide a label to the horizontal axis of the graph. This is done using the xlabel
command (FD, p. 542). An example is below:

xlabel('Time (samples)')

The Freemat Primer
Page 48 of 85

Figure 28: Positioning a Plot Title

Example - Putting in a Horizontal Axis Label

The following is an example of how to establish a label for the horizontal axis of a plot.

y=wavread('mywavfile.wav',[10000 12500]);
plot(y,'k-');
xlim([1000 1100]);
title('Audio Plot','position',[0.5 0.92]);
xlabel('Time (samples)','fontsize',20);

The result is shown in Figure 29.

In this example, the horizontal axis is first written then it is resized to a larger size to make it more
readable.

Topic 5.11: Setting the Y-Axis (Vertical) Label
You can also provide a label for the vertical or y-axis. You do this using the ylabel command (FD, p.
544).

Example - Adding a Vertical Axis Label to a Plot

y=wavread('moron.wav',[10000 12500]);
plot(y,'k-');

The Freemat Primer
Page 49 of 85

Figure 29: Making a Horizontal Axis Label

xlim([1000 1100]);
title('AudioPlot','position',[0.5 0.92]);
xlabel('Time(samples)','fontsize',20);
ylabel('Amplitude','fontsize',20);

Topic 5.12: Working with Multiple Figures
When you create a plot, it has a number. Note how the plot window says "Figure X" at the top. X is its
figure number. The first one, by default, is 1. Unless you change the figure number, any other plot
commands will be directed towards this plot window. Thus, you can inadvertently overwrite a plot
when you'd rather have two (or more) plots.

Fortunately, Freemat provides a simple way to manage multiple plots. This is with the figure(x)
command (FD, p. 499). You use this command to make figure x the active plot. If figure x doesn't
already exist, Freemat makes a blank plot window. This will remain the active plot unless and until
you change it. But there are two ways to change the active plot. The first is using the figure
command. The second is if you close the plot windows. For example, if you have two plots open, say
1 and 2, and you close 1, then 2 will become the active plot. If you close both, plot 1 will become the
active plot again. Essentially, you've started over.

Example - Creating Multiple Plots

t=1:128;
x=sin(2*pi*t/32);

The Freemat Primer
Page 50 of 85

Figure 30: Plot showing addition of a vertical label

plot(x)
y=cos(2*pi*t/16);
figure(2)
plot(y)

Topic 5.13: Saving Your Plots
Frankly, in my book, being able to save the plots as images is the single greatest thing about Freemat.
After processing some data, making an image (while setting the colors just right), re-sizing it, setting
the vertical and horizontal limits, and adding descriptive labels, the ability to quickly, painlessly, and
easily save them as image files is the single best thing about Freemat.

To save the active Freemat plot, use the print function (FD, p. 520). It has the following syntax:

print('filename.png')

This saves it to the file filename as a PNG (Portable Network Graphics) image. Other allowable
extensions are .jpg, .pdf, and .svg. Frankly, in my opinion, .png tends to look the best.

Example - Saving an Image

t=1:128;
x=sin(2*pi*t/32);
plot(x)
print('testfile.png')

The resulting image is shown in Figure 31.

The Freemat Primer
Page 51 of 85

Figure 31: Plot as shown when saved as an image

Topic 5.14: Where Are My Saved Images?
If you just used the print function, you may be wondering, Where did my saved image go? Unless you
spelled out the full path name in the print command, it went into your working directory. (See Topic
3.1: Setting the Working Directory for Saving Files for more information.) To confirm that your file
has been properly saved, you'll need to use the standard Windows Explorer window. Unfortunately, the
Files Window in Freemat is only updated when Freemat is first started. Therefore, if you save an
image, it will not show up in the Files Window until the next time you open Freemat.

The Freemat Primer
Page 52 of 85

Topic 6: Working with Arrays & Matrices

To Freemat, every number is a matrix. Single numbers, such as 5.342, are simply a matrix of 1, or
[1 1] according to Freemat. That is why if you store a single variable, it will be listed as a size of [1 1].

Here's an example:

--> y=5.342;
--> who
Variable Name Type Flags Size

ans double [0 0]
y double [1 1]

The matrix size is listed in the [row column] format. Thus, a matrix listed as a size of [2 3] means that
it has 2 rows and 3 columns.

Oh, and in case you are curious about the ans variable with a size of [0 0]. That's due to the who
command (FD, p. 267) itself. It appears that any command will cause the ans variable to be created,
even if it is a null value.

A matrix can have more than two dimensions. The simplest matrix has one dimension.

Topic 6.1: Creating a Sequential Array
A sequential matrix or array can be very handy. You can use it as a counter or to store variables
sequentially in an single-dimension array.

To create a simple array, you use the colon (:). For example, to create a sequential array that goes from
1 to 10, with a step size of 1, use the following command:

t=1:10;

Note: It's a good idea of getting in the habit of using the semi-colon when creating an array. If you
create a large array and don't use it, Freemat will try to display the variable. You'll wind up with a
screenful of unneeded numbers.

Freemat uses a step size of 1 by default. You can also make the array have a user-specified step size.
For example, if you want the sequence to go from 1 to 10 with a step size of 3, use the following
format:

t=1:3:10;

Example - Creating a Sequential Array

t=1:10
t =

The Freemat Primer
Page 53 of 85

 1 2 3 4 5 6 7 8 9 10
t=1:3:10
t =
 1 4 7 10

Topic 6.2: Creating a Random Array
Freemat provides a whole lot of functions to create a matrix filled with random values. These are:

● rand() - creates a random variable uniformly spaced between 0 - 1. (FD, p. 361)
● randbeta(alpha,beta) - creates a random variable with a beta distribution. The required

parameters, alpha and beta, set the shape of the probability distribution function (PDF) of the
samples. (FD, p. 363)

● randi(low,high) - creates an array of random integers between the values of low and high
(inclusive). (FD, p. 370)

Topic 6.3: Viewing a Matrix Value
To see the value of a single element of a matrix, use the following format:

x(d1,d2,...,dn)

where: x = the name of the variable
d1 = first dimension within the matrix
d2 = second dimension within the matrix
dn = n-th dimension within the matrix

Example - Viewing a Single Element of a Matrix

x=rand(3,3)
x =
 0.4421 0.9413 0.5842
 0.3209 0.1061 0.7719
 0.2505 0.3724 0.7086

x(1,2)
ans =
 0.9413

x(2,1)
ans =
 0.3209

To see a complete dimension of a matrix, use the colon (:). The format is:

x(:,:)

The Freemat Primer
Page 54 of 85

where x = the name of the variable
: = the dimension along which you wish to see

Example - Viewing a Complete Dimension of a Matrix

x=rand(3,3)
x =
 0.4421 0.9413 0.5842
 0.3209 0.1061 0.7719
 0.2505 0.3724 0.7086
x(:,1)
ans =

0.4421
0.3209
0.2505

x(1,:)
ans =

0.4421 0.9413 0.5842

Topic 6.4: Matrix Math
This will not be a tutorial on matrix math. There are plenty of books already available on that, such as
Elementary Linear Algebra by Howard Anton (Drexel University, John Wiley & Sons, 1987). Instead,
this will be a "Here's how Freemat performs various matrix math calculations."

Topic 6.4.1: Matrix Addition
When you add two matrices together, the result is a matrix that is the sum of the elements of the
summing matrices on an element-wise basis. Again, clear as mud? This means that the first matrix
will have its elements summed with the same elements of the second matrix. This is shown graphically
in Figure 32. Note: Matrix addition requires that the matrices being summed be the same size. This
means that each must have the same number of dimensions and the same number of elements in each
dimension.

The Freemat Primer
Page 55 of 85

Topic 6.4.2: Matrix Subtraction
This is the same as matrix addition. Each matrix must have the same number of dimensions and the
same number of elements in each dimension. The each element of the second matrix is subtracted from
the same element in the first matrix.

Example - Matrix Subtraction

--> x=rand(3,3)
x =
0.7457 0.9862 0.9445
0.3774 0.0484 0.4942
0.7623 0.0395 0.0089
--> y=rand(3,3)
y =
0.4399 0.3236 0.9954
0.9112 0.5196 0.5407
0.6565 0.1273 0.0840
--> x-y
ans =
0.3058 0.6626 -0.0509
-0.5338 -0.4713 -0.0465
0.1059 -0.0878 -0.0751

The Freemat Primer
Page 56 of 85

Example - How Two Matrices are Summed

x=rand(2,2)
x =
0.3759 0.9134
0.0183 0.3580
y=rand(2,2)
y =
0.7604 0.0990
0.8077 0.4972
x+y
ans =
1.1363 1.0124
0.8260 0.8552
Figure 32: Matrix Addition in Freemat

b11 b12

b22b21

a11+b11 a12+b12

a22+b22a21+b21

a11 a12

a22a21

+ =

Topic 6.4.3: Matrix Multiplication
There are two ways to multiply matrices in Freemat. The first is the standard, linear algebra way. In
this method, a two-dimensional matrix(x,y) multiplied by another two-dimensional matrix(y,z) will
create a matrix(x,z). For example, if the first matrix is a (10,3) and the second a (3,7), the resulting
matrix will be a (10,7) matrix.

To perform the standard multiplication, just multiply the two matrix variables as you would normally
multiply them. Remember that the second dimension of the first matrix must have the same number of
elements as the first dimension of the second matrix.

Example - Standard Matrix Multiplication

--> x=rand(3,5);
--> y=rand(5,6);
--> z=x*y;
--> who
Variable Name Type Flags Size

x double [3 5]
y double [5 6]
z double [3 6]

The second method multiplies each matrix on an element-wise basis, in the same way as addition and
subtraction. This requires an extra little bit on the command line. Instead of *, you need to use .* as
the operator. Thus, the operation would look like:

x .* y

This operation will multiply each element in x by the same element in y. Note that you can perform
this operation on matrices with any number of dimensions, so long as each matrix is equally sized,
meaning they have the same number of dimensions and the same number of elements in each
dimension.

Example - Element-wise Multiplication

--> x=rand(1,5)
x =
0.7202 0.1487 0.7576 0.6396 0.2645
--> y=rand(1,5)
y =
0.5725 0.5640 0.4085 0.8969 0.4665
--> x .* y
ans =
0.4123 0.0839 0.3095 0.5737 0.1234

Personally, this is one of my most-used operations. The reason is that, if the two variables represent
signals, then this type of element-wise multiplication is the same as mixing the two signals.

The Freemat Primer
Page 57 of 85

Topic 6.4.4: Matrix Division

Topic 6.4.4.1: Dividing a Matrix by a Single Number
You can divide a matrix by a single number, either real or imaginary. This simply divides each element
of the matrix by the single number. This is an example of element-wise math since each element is
divided individually.

Example - Dividing a Matrix by a Single Number

--> y
ans =
0.9132 0.0756 0.6215
0.0204 0.3774 0.4662
0.2899 0.4398 0.1450

--> y/5
ans =
0.1826 0.0151 0.1243
0.0041 0.0755 0.0932
0.0580 0.0880 0.0290

Topic 6.4.4.2: Dividing a Matrix by Another Matrix
Dare I say it? There is no such thing as matrix division. This means that you cannot, technically,
divide one matrix by another. You might say, "But in Freemat, I can create two matrices, then divide
one by the other." Yes. That is correct. But this is not a case of dividing one matrix by another. This
is a case of one matrix being multiplied by the inverse of the other. In order for this process to work,
the dividing matrix must have certain properties. These are:

1. The matrices must be square. This means they have to have the same number of rows as they
do columns (and vice-versa). This means only 2x2, 3x3, 4x4, etc, matrices are allowed. A 2x3
matrix or a 3x2 matrix would not be allowed.

2. The matrix must be invertible. The method to "divide" one matrix by another is to first take its
inverse, then multiply the inverse. But if the matrix is not invertible, the multiplication
operation will not be possible. In order for it to be invertible, the determinant of the matrix
cannot be zero.

If it meets these two criteria, then Freemat performs the inverse operation and multiplies the inverse by
the first matrix. Clear as mud? Let's look at an example.

Example - Multiplying a Matrix by the Inverse of Another Matrix

--> x=rand(3,3)
x =
0.0603 0.4750 0.1794
0.5541 0.6298 0.6902

The Freemat Primer
Page 58 of 85

http://people.richland.edu/james/lecture/m116/matrices/inverses.html

0.9326 0.4791 0.8172

--> y=rand(3,3)
y =
0.3334 0.7200 0.3153
0.5322 0.0361 0.1913
0.2064 0.1283 0.9270

--> x/y
ans =
0.6701 -0.3186 0.0313
0.7843 0.3961 0.3961
0.5233 1.2519 0.4452

Yes, it seems as if I'm dividing one matrix, x, by another matrix, y. But that's not the case. Instead,
what Freemat has done is to take the inverse of y, then multiplied that by x. I'll show this by showing
the intermediate step of calculating the inverse of the matrix y.

--> z=y^-1
z =
-0.0294 2.0584 -0.4148
1.4898 -0.8009 -0.3415
-0.1996 -0.3476 1.2184

--> x*z
ans =
0.6701 -0.3186 0.0313
0.7843 0.3961 0.3961
0.5233 1.2519 0.4452

Note that this result is the same as above.

Topic 6.4.4.3: Calculating the Inverse of a Matrix
To calculate the inverse of a matrix, simply use the exponent (^) function and take the matrix to the
power of -1.

Example - Calculating the Inverse of a Matrix

This example will create a square matrix (the only kind that can be inverted), then invert it.

y=rand(3,3)
y =
0.9132 0.0756 0.6215
0.0204 0.3774 0.4662
0.2899 0.4398 0.1450

y^-1
ans =
0.7923 -1.3832 1.0506

The Freemat Primer
Page 59 of 85

-0.6969 0.2520 2.1773
0.5295 2.0016 -1.8086

For more (and better) information, I recommend a book on linear algebra and matrix math, such as the
already-mentioned Elementary Linear Algebra by Howard Anton (Drexel University, John Wiley &
Sons, 1987).

Topic 6.4.5: Element-wise Matrix Math
It's possible to perform multiplication and division on matrices on an element-wise basis. This means
that I can multiply or divide each element of an MxN matrix by the corresponding element of another
matrix. In order to perform such element-wise operations, each matrix must be the exact same size.
For example, a 2x3 matrix requires another 2x3 (not a 3x2 or any other size!) matrix in order to
perform this type of operation.

To check whether the matrices are the same dimensions, you can:
a) use the who command (FD, p. 267) to see the variable dimensions or
b) use the "Workspace" tab next to the Command Window to see the variable dimensions.

Example - Problems with Element-wise Matrix Math

This is an example showing what happens when you try to perform element-wise math on two matrices
of either the wrong dimensions and/or the wrong sizes.

--> x=rand(100,1);
--> t=1:100;
--> who
Variable Name Type Flags Size

t int32 [1 100]
x double [100 1]

--> x .* t
Error: Size mismatch on arguments to arithmetic operator .*

In this case, the matrices have the same number of elements, but the variable t is a size [1 100] while
the variable x is a size [100 1]. To make them the same size, you can use the transpose command (FD,
p. 104) to transpose one of the two matrices and align them properly.

--> x=transpose(x);
--> who
Variable Name Type Flags Size

 ans double [0 0]
t int32 [1 100]
x double [1 100]

Note that the dimensions and sizes are the same. Thus, the math can now proceed.

--> z=x .* t;

The Freemat Primer
Page 60 of 85

--> who
Variable Name Type Flags Size

 ans double [0 0]
t int32 [1 100]
x double [1 100]
z double [1 100]

Note that that the following operations are always performed element-wise:
• Multiplication, division, addition or subtraction of a matrix with a single number.
• Addition or subtraction of two matrices

When performing element-wise multiplication (Freemat name = DOTTIMES, FD p. 83) or division
(Freemat name = DOTRIGHTDIVIDE, FD p. 80) using two matrices, precede the particular math
operator with a period. The particular math operators are:

• Multiplication: .*
• Division: ./

Example - Element-wise Multiplication of Two Matrices

--> x
ans =
0.0603 0.4750 0.1794
0.5541 0.6298 0.6902
0.9326 0.4791 0.8172

--> y
ans =
0.3334 0.7200 0.3153
0.5322 0.0361 0.1913
0.2064 0.1283 0.9270

--> x .* y
ans =
0.0201 0.3420 0.0566
0.2949 0.0228 0.1320
0.1925 0.0615 0.7576

Example - Element-wise Division of Two Matrices

--> x
ans =
0.0603 0.4750 0.1794
0.5541 0.6298 0.6902
0.9326 0.4791 0.8172

--> y
ans =
0.3334 0.7200 0.3153
0.5322 0.0361 0.1913

The Freemat Primer
Page 61 of 85

0.2064 0.1283 0.9270

--> x ./ y
ans =
0.1809 0.6597 0.5688
1.0411 17.4284 3.6083
4.5176 3.7355 0.8816

The Freemat Primer
Page 62 of 85

Topic 7: The Frequency Domain
Much of the data one collects is time-domain based. For example, if you make an audio recording, the
data is recorded and stored as time-domain samples. But the frequency-domain can provide details that
are not readily apparent in the time-domain. For digital data, you can see the frequency-domain using
the discrete Fourier transform (DFT). Within Freemat, you do this using the fast Fourier transform
(FFT) with the fft function.

If you want to delve more into this subject, I highly recommend the following books:
● Digital Signal Processing: A Practical Guide for Engineers and Scientists, Steven W. Smith,

Newnes Publishing, 2003
● Understanding Digital Signal Processing (Second Edition), Richard G. Lyons, Prentice-Hall

Publishing, 2004
● Digital Signal Analysis (Second Edition), Samuel D. Stearns & Don R. Hush, Prentice-Hall

Publishing, 1990
● Digital Signal Processing: A Practical Approach, Emmanuel C. Ifeachor & Barrie W. Jervis,

Addison-Wesley Publishers, 1993

Topic 7.1: Using the FFT
The fft() function (FD, p. 436) is used as follows:

y=fft(x)

where x = an array, preferably one whose length is a power of 2. The fft function works most
efficiently when its length is 2, 4, 8, 16, or some other power of 2. If the samples passed to the fft
function are real samples (as opposed to complex samples), then the last half of the FFT will be a
complex-conjugated, mirror image of the first half. This means that frequency bin 2 will be the
complex conjugate of frequency bin N, where N is the total number of bins in the fft function output,
frequency bin 3 will be the complex conjugate of frequency bin N-1, and so on. This means you only
need the first half of the fft function values in order to have all of the information contained in the FFT.
This is normally how FFT analyzers operate. They collect a power-of-2 number of real samples,
window the data (more on that later), perform the FFT, then display the magnitude of each frequency
bin.

Example - FFT of Real Samples

This example uses a short number of samples of a cosinusoid to show how the last half of the
frequency bins of an FFT of real samples is the complex-conjugated, mirror image of the first half.

--> t=1:13;
--> x=cos(2*pi*t/10);
--> y=fft(x)
y =
Columns 1 to 2

The Freemat Primer
Page 63 of 85

0.8090 + 0.0000i 0.8090 + 4.9185i
Columns 3 to 4
0.8090 - 2.7632i 0.8090 - 1.1665i
Columns 5 to 6
0.8090 - 0.6501i 0.8090 - 0.3444i
Columns 7 to 8
0.8090 - 0.1088i 0.8090 + 0.1088i
Columns 9 to 10
0.8090 + 0.3444i 0.8090 + 0.6501i
Columns 11 to 12
0.8090 + 1.1665i 0.8090 + 2.7632i
Columns 13 to 13
0.8090 - 4.9185i

The first number (0.8090 + 0.0000i) is the DC component, or DC bias, of the signal. The next number,
0.8090 + 4.9185i, is the complex conjugate of the last number, 0.8090 - 4.9185i. The second number,
0.8090 -2.7632i, is the complex conjugate of the second-to-last number, 0.8090 + 2.7632i. And so on.

Complex numbers, such as those that are the output of the fft function, cannot be plotted on a two-
dimensional graph. The most common display of the FFT is the magnitude of each frequency bin.
This is easily accomplished using the absolute value or abs function. The magnitude of a complex
number is its absolute value.

Example - Creating a Frequency Domain Display

t=1:128;
x=sin(2*pi*t/27);
y=fft(x);
plot(abs(y))

The Freemat Primer
Page 64 of 85

Topic 7.2: Windowing the Time-Domain Samples
Due to issues of scalloping loss and spectral leakage, you may need to window the time-domain
samples before you use the fft function. A window, in this instance, is a function that takes a vector and
forces the beginning and ends to, or close to, zero. While Freemat does not have any built-in window
functions (yet?), you can make your own. Below are a couple of simple ones.

Hanning window

t=1:N;
w=0.5-0.5*cos(2*pi*t/N);

Blackman-Harris window

t=1:N;
w=0.42-0.5*cos(2*pi*t/N)+0.08*cos(4*pi*t/N);

Example - Adding a Window for the FFT Plot

N=128;
t=1:N;
x=sin(2*pi*t/27);

The Freemat Primer
Page 65 of 85

Figure 33: FFT plot of sine wave

w=0.5-0.5*cos(2*pi*t/128);
y=x .* w;
z=fft(y);
plot(abs(z))

Topic 7.3: Adjusting the Values of the FFT
You may have noticed the magnitudes of the peaks in the previous FFT magnitude display. The peaks
are just above 30. This is due to the manner in which the FFT is calculated. To better represent the
magnitudes of the actual display, multiply each FFT bin value by 2/N, where N is the number of
samples in the array.

If you do so, you'll need to multiply each bin by the inverse (N/2) before calculating the inverse FFT
(ifft).

Example - Adjusting the FFT Magnitude Values

In this example, the frequency bins created by the FFT will be each multiplied by 2/N in order to
normalize them.

t=1:512;
x=cos(2*pi*t/23);
y=fft(x);
z=(2/512)*abs(y);

The Freemat Primer
Page 66 of 85

Figure 34: FFT plot of sine wave with Hanning window

plot(z)

Topic 7.4: Calculating the Inverse FFT
Freemat provides a function, ifft, which will calculate the inverse
FFT of an input array. However, the output array will be complex.
If the original function was real samples, such as samples from a
WAV file, then the output of the ifft function will also be real
samples. In the case of Freemat, this is actually the case, though
the samples don't know it. (Yes, that was a joke.) The output of
the ifft function is complex samples, but if the input was real
samples, then the output of the ifft function will have zero values for the imaginary components. It's a
straightforward affair to convert the complex to real samples. This can be done with the real function.

Example - Calculating the Inverse FFT

This example will calculate a time-domain waveform, then the FFT of this waveform, then the inverse
FFT.

t=1:512;
x=cos(2*pi*t/90);
y=fft(x);
z=ifft(y);

The real function will be used to recover the real waveform from the complex array output from the
ifft function.

The Freemat Primer
Page 67 of 85

Figure 35: Plot of normalized FFT magnitudes. Note that the peaks are
less then 1. This is due to scalloping loss and spectral leakage.

The ifft function is not listed in
the online reference nor in the
Freemat v3.6 Documentation.
Not to worry. It's there and it
works.

s=real(z);

In the final plot function, the variables will be offset by +1 and -1 in order to more easily compare
them.

plot((x+1),'k-',(s-1),'g-');

Topic 7.5: Setting the Frequency Units for the FFT Display
There are three ways to display the units for the horizontal axis of an FFT display. These are:

• samples
• fraction of the sampling frequency
• actual frequency

The simplest is to use the sample number. This requires no extra work on your part. By calculating the
FFT and displaying the magnitude (or phase) of the result, the default is to display the sample number
on the horizontal axis. For example, look at Figure 36. The horizontal axis is the sample number for
each point of the FFT.

When talking about signal processing, most FFTs are displayed using the fraction of the sample
frequency as the horizontal axis. This is shown using an example.

Example - FFT Display with a Fractional Sample Frequency Horizontal Axis

I'll create a 512-point sine wave, calculate the FFT of that sine wave, then change the horizontal axis to
a fractional display.

The Freemat Primer
Page 68 of 85

Figure 36: Comparison of original waveform (top) and the waveform
resulting from the FFT followed by inverse FFT (bottom).

--> t=1:512;
--> x=cos(2*pi*t/90);
--> y=fft(x);
--> z=abs(y);
--> plot(z,'k-')

Next, we'll change the horizontal axis so that it is the fraction of the sample rate. This uses the
following commands:

--> h=t/512;
--> plot(h,z,'k-')

The result is shown in Figure 38.

The Freemat Primer
Page 69 of 85

Figure 37: FFT display with sample numbers for the horizontal axis

The last method for displaying the horizontal axis is the actual frequency. In order for this to work, you
have to know the actual sample frequency used to sample the signal. If you don't know that
information (or if its irrelevant), then you need to use one of the other two methods for displaying the
horizontal axis. To calculate the actual frequency, use the following equation:

x f=
f

samples
∗sample rate

where: x = vector used to store the frequency values
f = frequency sample
samples = total number of samples used to create the FFT.
sample rate = frequency used to sample the digital signal. This is the inverse of the sample
period.

Example - Displaying Actual Frequency for an FFT Display

I'll create a sine wave using a known sample rate, calculate the FFT, then display the magnitude of the
FFT values using frequency values on the horizontal axis.

sr=1e6;
t=1:512;
freq=1e5;
x=cos(2*pi*t*freq/sr);
y=fft(x);

The Freemat Primer
Page 70 of 85

Figure 38: FFT display using the fraction of the sample rate for the
horizontal axis

z=abs(y);
f=t*sr/512;
plot(f,z,'k-')

Note that, in Figure 39, the horizontal axis is difficult to read. All of the numbers are jumbled together.
One way around this is to use different suffixes, such as kHz (kilohertz, or 103 Hz) and MHz
(megahertz, or 106 Hz), to make it easier to read. To make it easier to read, I'll divide the horizontal
axis by 1000 to make the units kHz. This is shown in Figure 40.

sr=1e6;
t=1:512;
freq=1e5;
x=cos(2*pi*t*freq/sr);
y=fft(x);
z=abs(y);
f=t*sr/512000;
plot(f,z,'k-')

The Freemat Primer
Page 71 of 85

Figure 39: FFT display using actual frequencies of a 100 kHz sine wave
sampled at 1 MHz.

The Freemat Primer
Page 72 of 85

Figure 40: FFT display of 100 kHz sine wave. This is using a 1 MHz
(1000 kHz) sample rate and the display has horizontal units of kHz.

Topic 8: Scripts & Functions
Scripts in Freemat are nothing more than a bunch of commands chained together. It's a computer
program. When you put them into a script file (which ends with .m), you create a file that Freemat will
execute as if you entered them directly into the Command Window one at a time. When working with
lots of commands, you may find it easier to work with scripts than from the Command Window. That
way, you can execute all of the commands with just one command, that of the file name of your script.

To create a script, you need a plain text editor. Within Windows, Notepad works well. You can use
word processors such as MS Word or OpenOffice Writer so long as you save the file as a plain text
(ASCII) format file. If you save it as a standard MS Word .doc file or anything that adds its own
formatting to the document, Freemat will return an error. (Yes. I tried it. I like to try things to see how
they will cause various processes to go kaflooey. But this one didn't go kaflooey. It just didn't go.)

Example - Running a Script Saved as a MS Word Document

Here's a quick example of what happens if you try to use a word processor to make Freemat scripts. In
this case, I used Microsoft Word to create a short script. The script I made is irrelevant. When I saved
the script, Word absolutely insisted on adding the extension .doc to the file. The filename was now
dynamite.doc. I couldn't stop it. So, after closing Word, I went into Windows Explorer and changed it
to .m. When I attempted to run the file, this is what I got:

--> dynamite
Error: Unexpected input at line number: 1 of file
C:Program Files/Freemat/dynamite.m
ÐÏ#à¡±
^

Like I said, a whole lot of nothing. You're much better off with a plain, Jane text editor or, even better,
the Freemat Editor (See below).

Topic 8.1: The Freemat Editor
One of the great things about Freemat is that it comes with a built-in editor. This is the one I highly
recommend that you use. To access it, use one of the following options:

● just type "edit" in the Command Window and hit <Enter>
● use the keyboard combination of Ctrl + E
● go to the menu Tools -> Editor.

This editor provides line numbering (useful when you get error messages for scripts and functions,
since the error message tells you which line number created the error), color coding and automatic
indentations for different functions (for and while loops, for example), and automatic file name
extension when saving and retrieving scripts and functions.

The Freemat Primer
Page 73 of 85

When you do, you'll get the window shown in Figure 40.

Topic 8.2: Creating a Script
Time to create a script. To create a script, type the commands, functions, numbers and variables into
the Editor Window as you would if you were typing them into the Command Window. Enter the
commands in the order in which you want them executed. The difference between the Editor and
Command Window is that, in the Editor Window, nothing will be executed. Yet.

Once you've entered the commands, save the script as a file with .m as the extension. To do so, from

the Freemat Editor, click File -> Save or Save As. Or click on the Save icon (). This opens a
window that should be familiar to anyone who has used Windows before. It's the standard "Save File"
window. It will ask you both where you want to put the file and a file name. The where needs to be
somewhere within your file path as defined in the Path Tool menu. The file name needs to be a
standard name that windows allows. And the file name convention for Freemat scripts is:

The Freemat Primer
Page 74 of 85

Figure 40: Editor Window

● A script file name must start with a letter.
● A script file name can contain letters, numbers and the underscore.
● A script file name cannot have any spaces.

NOTE: If you're using the Freemat editor, it will automatically put the .m extension on the end if you
don't. But I recommend getting into the habit of doing it yourself. That way, if you're making a file
with another editor (Notepad, vi in Linux, or whatever), you'll always have the correct extension and
there will be less chance of problems later on.

The following screen shots show some of the important parts of the Editor Window.

Line Numbering: Figure 41 shows a
short, (essentially) useless script
that shows the line numbering in
the Editor Window. The line
numbers are automatically
generated. If an error occurs in the
script or function, Freemat provides
an error statement listing the line
number where the error occured.

Color Coding & Indentation: Figure
42 shows the Editor Window with a
for loop. (For loops will be
covered in Topic 9: Flow Control.)
Note the color coding used in the
for loop. Also note the indentation
of the statements within the for
loop.

The Freemat Primer
Page 75 of 85

Figure 41: Editor Window showing line numbering

Figure 42: Editor Window showing color coding and
indentation.

Filename: Figure 43 shows the
filename at the top of the Editor
Window. The filename shows up
either (a) after you've saved a file or
(b) if you loaded the file.

New Tab Icon: Figure 44 shows the
New Tab icon within the Editor
Window. When you click this icon,
it creates a new tab (essentially, a
new Editor Window) that you can
use to create a new script or
function, or to edit a script or
function saved on your system.

Example - Creating a Script

Try this example script. Enter the following commands into the editor window. (Note: You can use
copy & paste if you don't want to type them in yourself.)

t=1:128;
x=sin(2*pi*t/16);
plot(x)

Figure 45 shows the Editor Window with the program.

The Freemat Primer
Page 76 of 85

Figure 43: Editor Window showing the filename

Figure 44: Editor Window showing the icon used to create a new
tab.

When you are finished, save the script file. From the "Save File" window, enter a file name. I used
"test_script.m" as my file name. Now go back to the Command Window. Type in the name minus the
extension:

test_script

Freemat executes each command in the script in the sequence you entered them.

For this simple script, it will create a variable array from 1 to 128, calculate eight cycles of a sine wave,
then plot the sine wave. The plot is shown in Figure 46.

The Freemat Primer
Page 77 of 85

Figure 45: Editor window with test script

The great thing about scripts is that Freemat makes it very easy to repeat them. If you run a script, the
command to run the script (which is simply the file name minus the .m extension) is stored in the
history file. From the Command Window, you can use the up and down arrows on your keyboard to
cycle through these old commands. To redo a script, from the Command Window, use the up arrow to
put the previous command onto the command line. Then press <Enter>. This repeats the script. Thus,
you can run a script, make any changes within the script you want, re-save the script, then repeat
running it from the Command Window. This is a very easy way to run long scripts repeatedly.

Example - A Script to Change Your Working Directory

Earlier, I explained how you could create a short script to change your working directory. Here's one
that I use to change mine, and I have it stored in my Program Files/Freemat folder in Windows. That
way, every time I start up Freemat, I can type in the filename (workdir) in the Command Window and
instantly I have a working directory where I can keep my data.

cd 'C:\Documents and Settings\Owner\My Documents\Freemat'

I saved the file into the C:/Program Files/Freemat 3.6 folder under the name workdir.m. Therefore,
when I want to run the file after starting up Freemat, I simply type workdir in the Command Window.

--> workdir
-->

Figure 47 shows a screen shot taken right after starting up Freemat. Figure 48 shows a screen shot
taken right after running the workdir script.

The Freemat Primer
Page 78 of 85

Figure 46: Basic plot, in this case a sine wave, generated from a script.

Topic 8.3: Running a Script
Once you've created a script and saved it as a .m file, you can run it
simply by typing the name of the file without typing the .m extension.
Then press <Enter>. For example, if you created a file called
"myscript.m", in the Command Window, you'd type the following to
execute the script:

myscript

It's that simple.

The Freemat Primer
Page 79 of 85

Remember: Do NOT type
the ".m" after the name
when you want to run the
script from the command
line!

Figure 47: Screen shot showing working directory after starting Freemat.

Figure 48: Screen shot taken after running the workdir script. It shows the new working directory.

Topic 8.4: Creating a Function
A function is a short script that performs an operation. The operation can be either to perform a series
of calculations, provide an output, create a display, or combinations of these. You typically create a
function for some action you routinely perform.

A function is a script that starts with the word function and accepts one (or more) input values. It may
also return one or more values. It has the following syntax:

function [return_value1, return_value2, ... , return_valueM] =
function_name (parameter1, parameter2, ... , parameterN)

statements

Notice that a function does not finish with the end statement. Once your function is complete, just
stop. If the function is called, Freemat goes through the function. Once it's completed, it returns the
value (if so designed) and goes back to wherever the function was called.

Example - A Function to Calculate the Factorial of a Number

Freemat does not have a built-in factorial function, typically denoted by the exclamation point (!).
However, it's straightforward to make your own. In the

function return_value=fact(n)
return_value=gamma(n+1);

Here is how it would appear in the Freemat Editor window:

The Freemat Primer
Page 80 of 85

Figure 49: The editor window with a short function written

This function calculates the factorial value of the input variable n. I saved it under the filename fact.m.
Below shows the result of calculating 5!.

--> fact(5)
ans =
120

The variables return_value are not necessary if the function does not return any values. Let's look at an
example:

The Freemat Primer
Page 81 of 85

Topic 9: Flow Control
This section will demonstrate different forms of flow control. This refers to the different ways in which
the flow of a script or function can be changed according to certain conditions that you can specify.
The specific flow control operators we'll look at are for and while loops as well as if-elseif-else
statements.

Topic 9.1: For Loops
The for loop (FD, p. 110) is used when you need to run a loop a fixed number of times. The format for
its use is:

for (variable=expression);
statements

end

The part within the parentheses will be a counter. Freemat does not require the parentheses.
Personally, I find the code more readable using the parentheses.

Example - Using a For Loop to Calculate Altitude of a Projectile

This short script (saved under the filename projectile.m) will calculate and display the vertical height
(altitude) of a projectile launched straight up. The for loop will be used to generate a time counter in 1
second intervals. Then, each second, the new altitude will be calculated.

% Calculating vertical height (altitude) for a projectile
%
% This script will calculate and display the height at 1 second
% intervals until the projectile reaches zero altitude.

velocity=100; % vertical velocity in meters/second.
zeroTime=velocity/9.8; % the time needed to achieve maximum height
maxHeight=4.9*(zeroTime)^2; % the maximum height, in meters, of the projectile

printf('The projectile initial velocity is %.2f meters/second.\n',velocity);
printf('The maximum height is %.3f meters.\n',maxHeight);
printf('The time to maximum height is %.2f seconds\n\n',zeroTime);

totalTime=ceil(2*zeroTime); % This is the total time the projectile will be
 % airborne

for (k=1:totalTime); % This for loop uses 1 second increments
 distance=velocity*k-(4.9*k^2);
 printf('Height at %d seconds is %.4f meters.\n',k,distance);
end

The output from this script appears as follows:

--> projectile
The projectile initial velocity is 100.00 meters/second.

The Freemat Primer
Page 82 of 85

The maximum height is 510.204 meters.
The time to maximum height is 10.20 seconds

Height at 1 seconds is 95.1000 meters.
Height at 2 seconds is 180.4000 meters.
Height at 3 seconds is 255.9000 meters.
Height at 4 seconds is 321.6000 meters.
Height at 5 seconds is 377.5000 meters.
Height at 6 seconds is 423.6000 meters.
Height at 7 seconds is 459.9000 meters.
Height at 8 seconds is 486.4000 meters.
Height at 9 seconds is 503.1000 meters.
Height at 10 seconds is 510.0000 meters.
Height at 11 seconds is 507.1000 meters.
Height at 12 seconds is 494.4000 meters.
Height at 13 seconds is 471.9000 meters.
Height at 14 seconds is 439.6000 meters.
Height at 15 seconds is 397.5000 meters.
Height at 16 seconds is 345.6000 meters.
Height at 17 seconds is 283.9000 meters.
Height at 18 seconds is 212.4000 meters.
Height at 19 seconds is 131.1000 meters.
Height at 20 seconds is 40.0000 meters.
Height at 21 seconds is -60.9000 meters.
-->

Topic 9.2: Comparison / Equality Operators
Before going into while loops (FD, p. 121) and if-elseif-else statements (FD, p. 111), I'll briefly cover
the comparison & equality operators. Such operators and comparisons are used to test values for
equality or (more likely) inequality. Freemat provides six (6) comparison operators. They are:

● Exactly Equal (==)
● Not Equal (~=)
● Less Than (<)
● Greater Than (>)
● Less Than Or Equal To (<=)
● Greater Than Or Equal To (>=)

While we humans think of a comparison as either true or false, computers think of them as 1 or 0,
respectively.

Topic 9.3: While Loops
A while loop (FD, p. 121) is one which is run until a certain condition is met. In the for loop, the
condition is the number of loops to run. In the while loop, you'll use a comparison operator to decide
when to stop.

while (comparison operation);
statements

The Freemat Primer
Page 83 of 85

end

Example - Using the While Loop

This example of the while loop will create a function to calculate the greatest common divisor of two
integers.

function gcd_value=gcd(n,m)
 while (m ~= 0);
 temp = mod(n,m);
 n = m;
 m = temp;
 end
 gcd_value=n;

It works by calculating the remainder of n modulo m using the mod command (FD, p. 188). It then
uses the remainder to home in on the greatest common denominator. The while loop keeps running
until the remainder of the modulo operation is 0. This algorithm is called a Euclidean version of the
greatest common divisor algorithm. I saved it under the filename of gcd.m. Thus, if I want to calculate
the greatest common divisor of 100 & 36, the calculation would appear as follows:

--> gcd(36,100)
ans =
4

This says that the greatest common divisor of 36 and 100 is 4.

Topic 9.4: If-Elseif-Else Statements
This is similar to the if-then-else statements many programmers are familiar with. The difference is
that this type of decision statement can be carried on indefinitely. The format for its use is as follows:

if (comparison operation);
 statement
elseif (comparison operation)
 statement
else (comparison operation)
 statement
end

The most basic statement has just one decision using if, such as follows:

if (comparison operation)
 statement
end

The Freemat Primer
Page 84 of 85

Example - If Statement

This simple example is a script that compares two numbers and prints the larger of the two.

x=5;
y=3;
greaterNumber=x;
if (x<y);
 greaterNumber=y;
end
greaterNumber

In this example, the two variables are x and y. Before the statement, the program makes the assumption
that x is larger. The if statement tests to see if y is greater. If it is, it executes the statement in which y
is set as the larger number. I saved the script under the filename greaterNumber.m. To run it, simply
type in the name (minus the ".m"):

--> greaterNumber
ans =
5

The Freemat Primer
Page 85 of 85

	About the Author
	User Assumptions
	How I Put this Book Together
	Licensing
	Using with Freemat v3.6 Documentation

	Topic 1: Working with Freemat
	Topic 1.1: The Main Screen - Ver 3.6
	Topic 1.1.1: The History Window
	Topic 1.1.2: The Files Window
	Topic 1.1.3: The Workspace Window

	Topic 1.2: The Command Window
	Topic 1.3: Seeing the Results (or Not)
	Topic 1.4: How Many Decimal Points Do You Want?
	Topic 1.5: Understanding Variables
	Topic 1.6: Variable Types
	Topic 1.7: The Variable "Ans"
	Topic 1.8: Built-In Variables
	Topic 1.9: Using Built-In Functions

	Topic 2: Working with Math
	Topic 2.1: Basic Math Operations
	Topic 2.2: Precedence
	Topic 2.3: Cumulative Sum, Products and Factorials
	Topic 2.4: Exponentials and Logarithms

	Topic 3: Setting Up the Freemat Environment
	Topic 3.1: Setting the Working Directory for Saving Files
	Topic 3.2: Setting the Path for Retrieving Data Files
	Topic 3.3: Using a Fixed Width Font in the Freemat Editor

	Topic 4: Working with WAV Files
	Topic 4.1: Reading a WAV File Size
	Topic 4.2: Reading a WAV File
	Topic 4.3: Reading the Sample Rate and Bit Depth
	Topic 4.4: Reading Only a Portion of a WAV File
	Topic 4.5: Writing a WAV File

	Topic 5: Plots
	Topic 5.1: Plot of a One-Dimensional Array
	Topic 5.2: Setting the Plot Color
	Topic 5.3: Setting the Line Type
	Topic 5.4: Point Markers
	Topic 5.5: Making an X-Y Plot
	Topic 5.6: Plots of Multiple, Independent Variables
	Topic 5.7: Setting Horizontal and Vertical Limits
	Topic 5.8: Resizing a Plot
	Topic 5.9: Creating a Plot Title
	Topic 5.10: Setting the X-Axis (Horizontal) Label
	Topic 5.11: Setting the Y-Axis (Vertical) Label
	Topic 5.12: Working with Multiple Figures
	Topic 5.13: Saving Your Plots
	Topic 5.14: Where Are My Saved Images?

	Topic 6: Working with Arrays & Matrices
	Topic 6.1: Creating a Sequential Array
	Topic 6.2: Creating a Random Array
	Topic 6.3: Viewing a Matrix Value
	Topic 6.4: Matrix Math
	Topic 6.4.1: Matrix Addition
	Topic 6.4.2: Matrix Subtraction
	Topic 6.4.3: Matrix Multiplication
	Topic 6.4.4: Matrix Division
	Topic 6.4.4.1: Dividing a Matrix by a Single Number
	Topic 6.4.4.2: Dividing a Matrix by Another Matrix
	Topic 6.4.4.3: Calculating the Inverse of a Matrix

	Topic 6.4.5: Element-wise Matrix Math

	Topic 7: The Frequency Domain
	Topic 7.1: Using the FFT
	Topic 7.2: Windowing the Time-Domain Samples
	Topic 7.3: Adjusting the Values of the FFT
	Topic 7.4: Calculating the Inverse FFT
	Topic 7.5: Setting the Frequency Units for the FFT Display

	Topic 8: Scripts & Functions
	Topic 8.1: The Freemat Editor
	Topic 8.2: Creating a Script
	Topic 8.3: Running a Script
	Topic 8.4: Creating a Function

	Topic 9: Flow Control
	Topic 9.1: For Loops
	Topic 9.2: Comparison / Equality Operators
	Topic 9.3: While Loops
	Topic 9.4: If-Elseif-Else Statements

